By Topic

An efficient Jacobi-like algorithm for parallel eigenvalue computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gotze, J. ; Inst. for Network Theor. and Circ. Des., Tech. Univ, Munich, Germany ; Paul, S. ; Sauer, M.

A very fast Jacobi-like algorithm for the parallel solution of symmetric eigenvalue problems is proposed. It becomes possible by not focusing on the realization of the Jacobi rotation with a CORDIC processor, but by applying approximate rotations and adjusting them to single steps of the CORDIC algorithm, i.e., only one angle of the CORDIC angle sequence defines the Jacobi rotation in each step. This angle can be determined by some shift, add and compare operations. Although only linear convergence is obtained for the most simple version of the new algorithm, the overall operation count (shifts and adds) decreases dramatically. A slow increase of the number of involved CORDIC angles during the runtime retains quadratic convergence

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 9 )