By Topic

The effect of code expanding optimizations on instruction cache design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, W.Y. ; Illinois Univ., Urbana, IL, USA ; Chang, P.P. ; Conte, T.M. ; Hwu, W.-M.W.

Shows that code expanding optimizations have strong and nonintuitive implications on instruction cache design. Three types of code expanding optimizations are studied in this paper: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increase the miss ratio for all cache sizes. However, they also increase the sequentiality of instruction access so that a simple load forwarding scheme effectively cancels the negative effects. Overall, the authors show that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 9 )