By Topic

Keeping chaos at bay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hunt, E.R. ; Dept. of Phys. & Astron., Ohio Univ., Athens, OH, USA ; Johnson, G.

The use of electronic circuits in studying chaotic dynamics and control are reviewed. Since all chaotic systems have several properties in common, simple circuits are analogous to much more complicated ones, such as lasers. Consequently, the methods developed to control chaos in electronic circuits are applicable to many diverse physical systems. The controlling device itself is a high-speed analog circuit. In applying perturbations, no calculations are made; instead, trial-and-error adjustments are used to locate the desired behavior. The initial observations of chaos in electronics, the development of the Ott-Grebogi-Yorke method for calculating the perturbations needed to stabilize a periodic orbit in a chaotic system and the occasional proportional feedback method, and their applications are discussed.<>

Published in:

Spectrum, IEEE  (Volume:30 ,  Issue: 11 )