By Topic

Extending Unix for scalable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
DeBenedictis, E.P. ; Scalable Computing, Redwood City, CA, USA ; Johnson, S.C.

Because it retrieves all instructions and data from a single memory, the von Neumann computer architecture has a fundamental speed limit. The scalable multicomputer architecture, which uses many microprocessors together to solve a single problem and can run at teraflop speeds, may be a solution. While teraflop processor technology is known, the scalable operating and I/O system technology necessary for those speeds are not known. The authors describe how Unix can be extended to scalable computing, permitting teraflop speeds and offering parallel computing to users unfamiliar with parallel programming. They designed this technology into the system software of the Ncube-2, the predecessor to Ncube's announced teraflop parallel computer. The authors describe the system in detail and provide some performance results.<>

Published in:

Computer  (Volume:26 ,  Issue: 11 )