By Topic

Position and force control for constrained manipulator motion: Lyapunov's direct method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Danwei Wang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; McClamroch, N.H.

A design procedure for simultaneous position and force control is developed, using Lyapunov's direct method, for manipulators in contact with a rigid environment that can be described by holonomic constraints. Many manipulators that interact with their environment require taking into account the effects of these constraints in the control design. The forces of constraint play a critical role in constrained motion and are, along with displacements and velocities, to be regulated at specified values. Lyapunov's direct method is used to develop a class of position and force feedback controllers. The conditions for gain selection demonstrate the importance of the constraints. Force feedback has been shown not to be mandatory for closed-loop stabilization, but it is useful in improving certain closed-loop robustness properties

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:9 ,  Issue: 3 )