By Topic

Comparisons of precipitation measurements by the Advanced Microwave Precipitation Radiometer and multiparameter radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Vivekanandan ; Nat. Center for Atmos. Res., Boulder, CO, USA ; J. Turk ; V. N. Bringi

The NASA airborne Advanced Microwave Precipitation Radiometer (AMPR) and the National Center for Atmospheric Research (NCAR) CP-2 multiparameter radar were jointly operated during the 1991 Convection and Precipitation/Electrification experiment (CaPE) in central Florida. The AMPR is a four channel, high resolution, across-track scanning total power radiometer system using the identical multifrequency feedhorn as the widely utilized Special Sensor Microwave/Imager (SSM/I) satellite system. Surface and precipitation feature are separable based on the TB behavior as a function of the AMPR channels. The radar observations are presented in a remapped format suitable for comparison with the multifrequency AMPR imagery. Striking resemblances are noted between the AMPR imagery and the radar reflectivity at successive heights, while vertical profiles of the CP-2 products along the nadir trace suggest a storm structure consistent with the viewed AMPR TB

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:31 ,  Issue: 4 )