By Topic

High voltage implanted RESURF p-LDMOS using BiCMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Summary form only given. The authors present a complementary RESURF p-LDMOS in which the n+ buried layer is used as an effective substrate and a field implant is introduced to modify the drift charges. The implant conditions in this case, particularly the placements, are studied. After processing, VB are investigated with different implant placement (LA, LB) and field oxide lengths LF. It is found that although the ion implant covers part of the drift region, the device performance can still be greatly improved. Results show that a long enough implant, compatible with LF, under the field oxide can result in the maximum, VB= VBP. This is verified by simulation results, which show that the peak of the surface electric field is significantly reduced. Results also show that a full length (LF) implantation under the field oxide can result in the minimum R on for a fixed LF

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 11 )