By Topic

Scan-based transition test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Savir ; IBM Corp., Hopewell Junction, NY, USA ; S. Patil

Skewed-load transition test is a form of scan-based transition test where the second vector of the delay test pair is a one bit shift over the first vector in the pair. This situation occurs when testing the combinational logic residing between scan chains. In the skewed-load test protocol, in order not to disturb the logic initialized by the first vector of the delay test pair, the second vector of the pair (the one that launches the transition) is required to be the next (i.e., one-bit-shift) pattern in the scan chain. Although a skewed-load transition test is attractive from a timing point of view, there are various problems that may arise if this strategy is used. Here, several issues of skewed-load transition test are investigated. Issues such as transition test calculus, detection probability of transition faults, transition fault coverage, and enhancement of transition test quality are thoroughly studied

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:12 ,  Issue: 8 )