By Topic

Delay-fault test generation and synthesis for testability under a standard scan design methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwang-Ting Cheng ; AT&T Bell Labs., Murray Hill, NJ, USA ; Devadas, S. ; Keutzer, K.

The problems of test generation and synthesis aimed at producing VLSI sequential circuits that are delay-fault testable under a standard scan design methodology are considered. Theoretical results regarding the standard scan-delay testability of finite state machines (FSMs) described at the state transition graph (STG) level are given. It is shown that a one-hot coded and optimized FSM whose STG satisfies a certain property is guaranteed to be fully gate-delay-fault testable under standard scan. This result is extended to arbitrary-length encodings, and a heuristic state assignment algorithm that results in highly gate-delay-fault testable sequential FSMs is developed. The authors also consider the problem of delay test generation for large sequential circuits and modify a PODEM-based combinational test pattern generator. The modifications involve a two-time-frame expansion of the combinational logic of the circuit and the use of backtracking heuristics tailored for the problem. A version of the scan shifting technique is also used in the test pattern generator. Test generation, flip-flop ordering, flip-flop selection and test set compaction results on large benchmark circuits are presented

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:12 ,  Issue: 8 )