By Topic

Statistical timing analysis of combinational logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jyu, H.-F. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Malik, S. ; Devadas, S. ; Keutzer, K.W.

Efficient methods for computing an exact probability distribution of the delay of a combinational circuit, given probability distributions for the gate and wire delays, are developed. The derived distribution can give the probability that a combinational circuit will achieve a certain performance, across the possible range. This information can then be used to predict the expected performance of the entire circuit. The techniques presented target fast analysis as well as reduced memory requirements. The notion of a correct approximation, based on convex inequality, which never overestimates the percentage of circuits that will achieve any given performance is defined. It is shown that given the assumption that all the topologically longest paths are responsible for the delay, the computation technique provides a correct probabilistic measure in the sense given above. Methods are given to identify and to ignore false paths in the probabilistic analysis, so as to obtain correct and less pessimistic answers to the performance prediction question. Some practical results are given for a number of benchmark combinational circuits.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:1 ,  Issue: 2 )