By Topic

QR-decomposition based algorithms for adaptive Volterra filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Syed, M.A. ; Dept. of Electr. Eng., Utah Univ., Salt Lake City, UT, USA ; Mathews, V.J.

A QR-recursive-least squares (RLS) adaptive algorithm for non-linear filtering is presented. The algorithm is based solely on Givens rotation. Hence the algorithm is numerically stable and highly amenable to parallel implementations. The computational complexity of the algorithm is comparable to that of the fast transversal Volterra filters. The algorithm is based on a truncated second-order Volterra series model; however, it can be easily extended to other types of polynomial nonlinearities. The algorithm is derived by transforming the nonlinear filtering problem into an equivalent multichannel linear filtering problem with a different number of coefficients in each channel. The derivation of the algorithm is based on a channel-decomposition strategy which involves processing the channels in a sequential fashion during each iteration. This avoids matrix processing and leads to a scalar implementation. Results of extensive experimental studies demonstrating the properties of the algorithm in finite and `infinite' precision environments are also presented. The results indicate that the algorithm retains the fast convergence behavior of the RLS Volterra filters and is numerically stable

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:40 ,  Issue: 6 )