By Topic

Performance and fault-tolerance of neural networks for optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Protzel, P.W. ; Bavarian Res. Center for Knowledge-Based Syst., Erlangen, Germany ; Palumbo, D.L. ; Arras, M.K.

The fault-tolerance characteristics of time-continuous, recurrent artificial neural networks (ANNs) that can be used to solve optimization problems are investigated. The performance of these networks is illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to up to 13 simultaneous stuck-at-1 or stuck-at-0 faults for network sizes of up to 900 neurons. The effect of these faults on the performance is demonstrated, and the cause for the observed fault-tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations and the potential benefits of delegating a critical task to a fault-tolerant network are discussed

Published in:

Neural Networks, IEEE Transactions on  (Volume:4 ,  Issue: 4 )