Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Efficient routing schemes for multiple broadcasts in hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stamoulis, G.D. ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; Tsitsiklis, J.N.

The authors analyze the problem in which each node of the binary hypercube independently generates packets according to a Poisson process with rate λ; each of the packets is to be broadcast to all other nodes. Assuming unit packet length and no other communications taking place, it is observed that the system can be stable in steady-state only if the load factor ρ≡λ (2d-1)/d satisfies ρ<1 where d is the dimensionality (diameter) of the hypercube. Moreover, the authors establish some lower bounds for the steady-state average delay D per packet and devise and analyze two distributed routing schemes that are efficient in the sense that stability is maintained for all ρ<ρ* where ρ* does not depend on the dimensionality d of the network, while the average delay D per packet satisfies DKd(1+ρ) for small values of ρ (with constant K). The performance evaluation is rigorous for one scheme, while for the other the authors resort to approximations and simulations

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:4 ,  Issue: 7 )