Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Automated tracking and grasping of a moving object with a robotic hand-eye system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Allen, P.K. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Timcenko, A. ; Yoshimi, B. ; Michelman, P.

An attempt to achieve a high level of interaction between a real-time vision system capable of tracking moving objects in 3-D and a robot arm with gripper that can be used to pick up a moving object is described. The interplay of hand-eye coordination in dynamic grasping tasks such as grasping of parts on a moving conveyor system, assembly of articulated parts, or for grasping from a mobile robotic system is explored. The goal is to build an integrated sensing and actuation system that can operate in dynamic as opposed to static environments. The system built addresses three distinct problems in using robotic hand-eye coordination for grasping moving objects: fast computation of 3-D motion parameters from vision, predictive control of a moving robotic arm to track a moving object, and interception and grasping. The system operates at approximately human arm movement rates. Experimental results in which a moving model train is tracked, stably grasped, and picked up by the system are presented. The algorithms developed to relate sensing to actuation are quite general and applicable to a variety of complex robotic tasks

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:9 ,  Issue: 2 )