By Topic

Tests of backscatter coefficient measurement using broadband pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian-Feng Chen ; Dept. of Med. Phys., Wisconsin Univ., Madison, WI, USA ; Zagzebski, J.A. ; Madsen, E.L.

An adaptation to a data reduction method is outlined for determining backscatter coefficients, eta , when broad-bandwidth pulses are employed. The accuracy of these eta values is assessed with well-characterized phantoms, for which backscatter coefficients based on their physical properties have been independently calculated. One phantom produces Rayleigh-like scattering, where the backscatter coefficient varies smoothly with frequency over the analysis bandwidth. A second phantom exhibits local maxima and minima in the scattering function versus frequency due to the presence of millimeter-sized graphite gel spheres in a gel background. The method was found to produce accurate results using time gate durations as small as 2 mu s, although better accuracy is obtained for longer gate durations, particularly when the sample exhibits resonance peaks in backscatter versus frequency. Use of a Hamming window in place of a rectangular window extends the accuracy near the upper and lower limits of the frequency range.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:40 ,  Issue: 5 )