By Topic

Delay prediction from resistance-capacitance models of general MOS circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Martin, D. ; Canadian Marconi Co., Montreal, Que., Canada ; Rumin, N.C.

Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capacitive load. The iterative method, in which the RC network is converted to a tree by node splitting is an exception. An efficient algorithm which takes the above dependence into account by adjusting the resistances in the model within the iterative process of the LM algorithm is presented. It is shown that by focusing on high-capacitance nodes and by distributing the split capacitances on the basis of path conductances, it is possible in many cases to dispense with iteration. For large transistor groups, decomposition into biconnected components is shown to be very effective. Combinations of these techniques have been tested on a large variety of circuits, a representative subset of which is presented

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:12 ,  Issue: 7 )