By Topic

Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Umeno, T. ; Dept. of Electr. Eng., Tokyo Univ., Japan ; Kaneko, T. ; Hori, Y.

A novel robust servosystem design method based on the two-degree-of-freedom (TDOF) controller and its application to advanced motion control for a robot manipulator is proposed. This servosystem is derived from the simple parametrization. The command input response and the closed loop characteristics can be specified independently by using two parameters which belong to the ring of stable and proper rational functions. The sensitivity and the complementary sensitivity functions can be determined straightforwardly through the optimization of the two design parameters. The control performance of the servosystem has been demonstrated. A completely decentralized joint control system for multiaxis robut manipulators has been realized. In particular, various kinds of robot motion controls, such as compliance, force, and hybrid controls, are realized in a unified way based on the robust position control. This servosystem has been implemented using DSP

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:40 ,  Issue: 5 )