By Topic

A numerical model for thermal processes in an electrode submitted to an arc in air and its experimental verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chabrerie, J.P. ; Lab. de Genie Electr. de Paris, Paris VI Univ., France ; Devautour, J. ; Teste, P.

The energy transferred to the electrodes, based on the determination of the liquid and vapor quantities created by the arc root, is evaluated by numerical computation and compared with measurements. With the help of a high-speed laser cinematography technique, the authors confirmed the assumption of a concentrated and quasi-circular arc root in air at atmospheric pressure, so an axial symmetry is adopted in the numerical model for both arc root and electrode. This modeling takes into account the huge power focused onto a small area of the electrode surface, producing intense surface heating, liquefaction, evaporation, and subsequent crater formation. This is a typical ablation problem with moving boundaries, and a method is presented here which overcomes the difficulties related to state changes and the ablation problem. The model is used to account for the results obtained with an original experimental device designed to obtain directly the amount of liquid and vapor formed, and finally, to provide a good approximation of the energy brought by the arc to the electrodes

Published in:

Components, Hybrids, and Manufacturing Technology, IEEE Transactions on  (Volume:16 ,  Issue: 4 )