Cart (Loading....) | Create Account
Close category search window
 

Manipulating general vectors on synchronous binary n-cube

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Woei Lin ; Inst. of Comput. Sci., Nat. Chung-Hsing Univ., Taiwan

The author describes efficient manipulations of general vectors on the synchronous binary n-cube structure. A general vector is defined as a set of elements stored in consecutive processors with arbitrary length and starting point, and one element per processor. New routing methods for manipulating general vectors are presented. The author focuses on six major vector manipulating functions: merge, split, rotation, reverse, compression, and expansion. They are frequently used to extract and structure data parallelism in image processing and parallel solutions of linear systems. It is observed that varying the dimension order is a key to collision-free vector manipulations. A formal network model is developed for determining when link collisions occur. With the aid of this network model dimension orders yielding collision-free routine for the six manipulating functions are identified. Collision-free routing allows data communication to complete in the optimal time-single network cycle. The dimension orders are easy to encode and decode, and they are feasible for physical implementation

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 7 )

Date of Publication:

Jul 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.