By Topic

Reconfigurability and reliability of systolic/wavefront arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sha, E.H.-M. ; Dept. of Comput. Sci. & Eng., Notre Dame Univ., IN, USA ; Steiglitz, K.

The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. The degree of reconfigurability (DR) and DR with distance (DRd) of a redundant graph are defined. When DR and DRd are independent of the size of the application graph, the graph is finitely reconfigurable (FR) and locally reconfigurable (LR), respectively. It is shown that DR provides a natural lower bound on the time complexity of any distributed reconfiguration algorithm and that there is no difference between being FR and LR on dynamic graphs. It is also shown that if both local reconfigurability and a fixed level of reliability are to be maintained, a dynamic graph must be of a dimension at least one greater than the application graph. Thus, for example, a one-dimensional systolic array cannot be embedded in a one-dimensional dynamic graph without sacrificing either reliability or locality of reconfiguration

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 7 )