By Topic

Multiple multipole method for simulating EM problems involving biological studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kuster, N. ; ETH, Zurich, Switzerland

The three-dimensional implementation of the multiple multipole (MMP) method, based on the generalized multipole technique (GMT), is presented. Its performance in simulating electromagnetic problems involving biological bodies is analyzed. In particular, the step-by-step simulation technique and the built-in procedures to validate the solution on a numerical basis are discussed and demonstrated by two examples. A comparison is made with other numerical techniques often applied in this field. The advantages of the MMP method are shown to be in its validation capability, in its efficiency for smoothly shaped bodies and in the achievable accuracy, in particular near boundaries. The method is especially suited to handle high-gradient fields in the vicinity of biological bodies.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 7 )