By Topic

Signal modeling techniques in speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Picone, J.W. ; Texas Instrum. Inc., Dallas, TX, USA

A tutorial on signal processing in state-of-the-art speech recognition systems is presented, reviewing those techniques most commonly used. The four basic operations of signal modeling, i.e. spectral shaping, spectral analysis, parametric transformation, and statistical modeling, are discussed. Three important trends that have developed in the last five years in speech recognition are examined. First, heterogeneous parameter sets that mix absolute spectral information with dynamic, or time-derivative, spectral information, have become common. Second, similarity transform techniques, often used to normalize and decorrelate parameters in some computationally inexpensive way, have become popular. Third, the signal parameter estimation problem has merged with the speech recognition process so that more sophisticated statistical models of the signal's spectrum can be estimated in a closed-loop manner. The signal processing components of these algorithms are reviewed

Published in:

Proceedings of the IEEE  (Volume:81 ,  Issue: 9 )