Cart (Loading....) | Create Account
Close category search window
 

Fabrication of CMOS on ultrathin SOI obtained by epitaxial lateral overgrowth and chemical-mechanical polishing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Shahidi, G. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Davari, B. ; Taur, Y. ; Warnock, J.
more authors

A novel method for obtaining ultra-thin, defect-free silicon on insulator (SOI) film is introduced. This technique uses epitaxial lateral overgrowth of Si (ELO) and chemical-mechanical polishing (CMP). SOI films with thicknesses of 100 nm were obtained. These films were used in fabrication and dual poly CMOS devices. The quality of the SOI film obtained is the same as that of bulk silicon, and the device characteristics are comparable with those of devices fabricated on bulk. A minimum geometry unloaded inverter ring oscillator on SOI film obtained by ELO and CMP showed a speed improvement of 3* over the bulk devices.<>

Published in:

Electron Devices Meeting, 1990. IEDM '90. Technical Digest., International

Date of Conference:

9-12 Dec. 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.