By Topic

Sparse matrix methods for chemical process separation calculations on supercomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zitney, S.E. ; Cray Research Inc., Eagan, MN, USA

The author considers using the frontal method on supercomputers to solve the large, sparse linear equation systems arising in process separation calculations. The motivation is that the frontal method takes advantage of vector computers by treating parts of the sparse matrix as full submatrices. This allows arithmetic operations to be performed with full-matrix code and circumvents the difficulties inherent in indirect addressing on vector processors. Separation problems from the commercial simulators ASPEN PLUS and SPEEDUP are used as test cases. Results on a CRAY Y-MP supercomputer show that the frontal method significantly reduces simulation time, by more than an order of magnitude in many cases, compared to traditional sparse matrix methods

Published in:

Supercomputing '92., Proceedings

Date of Conference:

16-20 Nov 1992