By Topic

Multistage fuzzy inference formulated as linguistic-truth-value propagation and its learning algorithm based on back-propagating error information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Uehara, K. ; ATR Opt. & Radio Commun. Res. Lab., Kyoto, Japan ; Fujise, M.

Multistage fuzzy inference, where in the consequence in an inference stage is passed to the next stage as a fact, is studied and formulated as a type of linguistic-truth-value propagation, based on a concept of linguistic similarities between conditional propositions in successive stages. The formulation is useful in studying the characteristics of multistage fuzzy inference and reveals its structural relationship to multilayer perceptrons. The learning algorithm for multistage fuzzy inference is then derived, using backpropagating error information. The algorithm provides a means of automatically training the multistage fuzzy inference network, using input-output exemplar patterns. Intermediate membership functions based on simulation results, which are generated automatically in the intermediate stage, are proposed. The intermediate stage fuzzy-classifies the input space using intermediate membership functions. In this way, intermediate membership functions provide information regarding regional characteristics in exemplar patterns

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:1 ,  Issue: 3 )