By Topic

A generalized Gaussian image model for edge-preserving MAP estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bouman, C. ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Sauer, K.

The authors present a Markov random field model which allows realistic edge modeling while providing stable maximum a posterior (MAP) solutions. The model, referred to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisfies several desirable analytical and computational properties for map estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the a posteriori log-likelihood function. The GGMRF is demonstrated to be useful for image reconstruction in low-dosage transmission tomography

Published in:

Image Processing, IEEE Transactions on  (Volume:2 ,  Issue: 3 )