By Topic

Hierarchical reconstruction using geometry and sinogram restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prince, J.L. ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Willsky, A.S.

The authors describe and demonstrate a hierarchical reconstruction algorithm for use in noisy and limited-angle or sparse-angle tomography. The algorithm estimates an object's mass, center of mass, and convex hull from the available projections, and uses this information, along with fundamental mathematical constraints, to estimate a full set of smoothed projections. The mass and center of mass estimates are made using a least squares estimator derived from the principles of consistency of the Radon transform. The convex hull estimate is produced by first estimating the positions of support lines of the object from each available projection and then estimating the overall convex hull using prior shape information. Estimating the position of two support lines from a single projection is accomplished using a generalized likelihood ratio technique for estimating jumps in linear systems. Results for simulated objects in a variety of measurement situations are shown, and several possible extensions to this work are discussed

Published in:

Image Processing, IEEE Transactions on  (Volume:2 ,  Issue: 3 )