By Topic

Constrained clustering as an optimization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Rose ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; E. Gurewitz ; G. C. Fox

A deterministic annealing approach to clustering is derived on the basis of the principle of maximum entropy. This approach is independent of the initial state and produces natural hierarchical clustering solutions by going through a sequence of phase transitions. It is modified for a larger class of optimization problems by adding constraints to the free energy. The concept of constrained clustering is explained, and three examples are are given in which it is used to introduce deterministic annealing. The previous clustering method is improved by adding cluster mass variables and a total mass constraint. The traveling salesman problem is reformulated as constrained clustering, yielding the elastic net (EN) approach to the problem. More insight is gained by identifying a second Lagrange multiplier that is related to the tour length and can also be used to control the annealing process. The open path constraint formulation is shown to relate to dimensionality reduction by self-organization in unsupervised learning. A similar annealing procedure is applicable in this case as well

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 8 )