By Topic

Pattern recognition properties of various feature spaces for higher order neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schmidt, W.A.C. ; US Naval Air Dev. Center, Warminster, PA, USA ; Davis, J.P.

The authors explore alternatives that reduce the number of network weights while maintaining geometric invariant properties for recognizing patterns in real-time processing applications. This study is limited to translation and rotation invariance. The primary interest is in examining the properties of various feature spaces for higher-order neural networks (HONNs), in correlated and uncorrelated noise, such as the effect of various types of input features, feature size and number of feature pixels, and effect of scene size. The robustness of HONN training is considered in terms of target detectability. The experimental setup consists of a 15×20 pixel scene possibly containing a 3×10 target. Each trial used 500 training scenes plus 500 testing scenes. Results indicate that HONNs yield similar geometric invariant target recognition properties to classical template matching. However, the HONNs require an order of magnitude less computer processing time compared with template matching. Results also indicate that HONNs could be considered for real-time target recognition applications

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 8 )