By Topic

Adaptive split-and-merge segmentation based on piecewise least-square approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xiaolin Wu ; Dept. of Comput. Sci., Western Ontario Univ., London, Ont., Canada

The performance of the classic split-and-merge segmentation algorithm is severely hampered by its rigid split-and-merge processes, which are insensitive to the image semantics. The author proposes efficient algorithms and data structures to optimize the split-and-merge processes by piecewise least-square approximation of image intensity functions. This optimization aims at the unification of segment finding and edge detection. The optimized split-and-merge algorithm is shown to be adaptive to the image semantics and, hence, improves the segmentation validity of the previous algorithms. This algorithm also appears to work well on noisy sources. Since the optimization is done within the split-and-merge framework, the better segmentation performance is achieved at the same order of time complexity as the previous algorithms

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 8 )