By Topic

A constrained approach to multifont Chinese character recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, X. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Jun Gu ; Wu, Y.

The constraint graph is introduced as a general character representation framework for recognizing multifont, multiple-size Chinese characters. Each character class is described by a constraint graph model. Sampling points on a character skeleton are taken as nodes in the graph. Connection constraints and position constraints are taken as arcs in the graph. For patterns of the same character class, the model captures both the topological invariance and the geometrical invariance in a general and uniform way. Character recognition is then formulated as a constraint-based optimization problem. A cooperative relaxation matching algorithm that solves this optimization problem is developed. A practical optical character recognition (OCR) system that is able to recognize multifont, multiple-size Chinese characters with a satisfactory performance was implemented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 8 )