By Topic

Network design and performance for a massively parallel SIMD system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Darbha, S. ; North Carolina State Univ., Raleigh, NC, USA ; Davis, E.W.

It is shown that a nearest neighbor communication network can be complimented with a log-diameter multistage network to handle different communications patterns. This is especially useful when the pattern of data movement is not uniform. The designed network is evaluated for two cases: a dense case with many processing elements communicating and a sparse case. For 32-b data, the algorithm for computing partial sums of an array improves by 2.7 times with the multistage interconnection network. In a sparse random case, the number of cycles taken to communicate 32 b is 4000 (with 10% of the nodes communicating). Thus, it is concluded that a network like a multistage omega network is very useful for SIMD (single-instruction multiple-data) massively parallel machines. This is especially true if the machine is to be used for applications where long distance and nonuniform routing patterns are needed

Published in:

Frontiers of Massively Parallel Computation, 1992., Fourth Symposium on the

Date of Conference:

19-21 Oct 1992