Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A network level channel abstraction for multimedia communication in real-time networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Znati, T. ; Dept. of Comput. Sci., Pittsburgh Univ., PA, USA ; Field, B.

The design of communication protocols to support guaranteed real-time communication for distributed multimedia systems is examined. A network level abstraction called φ-channel that supports the requirements of real-time applications is proposed. A φ-channel represents a fractional, simplex, end-to-end communication channel between a source and a destination. The channel is characterized by a set of specific performance parameters associated with its traffic. The required performance characteristics of a φ-channel are specified in terms of the packet maximum end-to-end delay and the maximum number of packets that can be sent over that delay. The primary attribute supported by the φ-channel is the on-time reliability. Based on the specified parameters, the underlying delivery system verifies the feasibility of supporting such a channel. The performance of an accepted φ-channel is guaranteed under any conditions, barring hardware failures. The basic scheme that the model uses to verify the feasibility of accepting a φ-channel and the run-time support used to guarantee its performance are described. The results of a simulation experiment implementing the basic functionalities of the proposed scheme are also presented

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 4 )