By Topic

Techniques for high power microwave sources at high average power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. N. Benford ; Phys. Int. Co., San Leandro, CA, USA ; N. J. Cooksey ; J. S. Levine ; R. R. Smith

Experiments on CLIA (compact linear induction accelerator), capable of generating 750 kV and 10 kA into a matched load using magnetic switching to produce 60 ns long pulses, are described. As a first application, the authors used CLIA to drive a water-cooled L-band magnetron at repetition rates as high as 250 Hz with no breakdown or pulse shortening. This gives an average power of 6.3 kW. A short burst at 1 kHz demonstrates operation that would translate to an average power of approximately 25 kW. In this regime operation is not limited by gas build-up, electrode erosion or microwhisker depletion. Currently, the authors are operating on CLIA with a high current relativistic klystron. Beams with modulated current powers of approximately 1 GW have been generated at 100 Hz for bursts as long as 5000 pulses. It is concluded that there are no apparent obstacles to much higher average powers at higher peak powers

Published in:

IEEE Transactions on Plasma Science  (Volume:21 ,  Issue: 4 )