By Topic

An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X- and Ku-band power applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huang, J.C. ; Raytheon Co., Lexington, MA, USA ; Jackson, G.S. ; Shanfield, S. ; Platzker, A.
more authors

The authors determined that RF drain current degradation is responsible for the poor power performance of wide-recessed pseudomorphic high-electron-mobility transistors (PHEMTs). A model based on surface states was proposed to explain this phenomenon, which then led to the use of charge-screen layers and a double-recessed gate process to suppress surface effects. Combined, these two modifications increased the device's gate-drain reverse breakdown voltage without causing a degradation in the transistor's RF drain current. This allowed the simultaneous achievement of high power-added efficiency and high power density which established a new performance record for power PHEMTs at X- and Ku-bands. Delay time analysis of single- and double-recessed PHEMTs revealed that the benefit of a larger breakdown voltage in the latter device design came at the cost of a larger drain delay time. Drain delay accounted for 45% of the total delay when the 0.35-μm double-recessed PHEMT was biased at Vds=6 V

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 5 )