Cart (Loading....) | Create Account
Close category search window
 

On carrier injection and gain dynamics in quantum well lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tessler, Nir ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Eistenstein, G.

A detailed carrier dynamics model for quantum well lasers is presented. The model describes the transport of carriers using full continuity equations and the gain by rate equations for each well separately, and it also takes into account electron-hole interactions which modify the energy band structure. To this end, the model includes Poisson and Schrodinger equations. The model is solved in steady state where it yields nonuniform carrier distributions along the crystal growth axis. Dynamically, the model is solved in the time domain, yielding the evolution of carriers in time and space and highlighting a new effect, photon-assisted carrier transport. The model is also solved in the small-signal regime where the phase lag in gain between wells is determined

Published in:

Quantum Electronics, IEEE Journal of  (Volume:29 ,  Issue: 6 )

Date of Publication:

Jun 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.