By Topic

Threshold current analysis of compressive strain (0-1.8%) in low-threshold, long-wavelength quantum well lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. S. Osinski ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; P. Grodzinski ; Y. Zou ; P. D. Dapkus

A comprehensive study of the effect of compressive strain on the threshold current performance of long-wavelength (1.5 μm) quantum-well (QW) lasers is presented. Model predictions of threshold currents in such devices identify QW thickness as a parameter that must be considered in optimizing laser performance when Auger currents are present. Experimental comparisons between strained and unstrained devices reveal strain-induced reductions in internal transparency current density per QW from 66 to 40 A/cm2, an increase in peak differential modal gain from 0.12 to 0.23 cm/A, and evidence for the elimination of intervalence band absorption as compressive strain increases from 0 to 1.8%. However, most of these improvements arise in the first ~1% of compressive strain. To fabricate low-threshold 1.5-μm buried heterostructure (BH) devices in InP using the strained QW active regions an optimized design which shows that threshold current is at its lowest when the stripe width is approximately 0.6-0.7 μm is derived. Results for uncoated BH lasers are reported

Published in:

IEEE Journal of Quantum Electronics  (Volume:29 ,  Issue: 6 )