By Topic

Fabrication and characterization of single-electron tunneling transistors in the superconducting state

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hergenrother, J.M. ; Dept. of Phys., Harvard Univ., Cambridge, MA, USA ; Tuominen, M.T. ; Tighe, T.S. ; Tinkham, M.

Electron-beam lithography was used to fabricate single electron charging effect devices with ultrasmall capacitance Al/Al/sub 2/O/sub 3//Al tunnel junctions. The single electron transistor is a three-terminal device composed of two series tunnel junctions and a gate electrode capacitively coupled to the island between them. Typical junctions are of area 60 nm*60 nm with a capacitance of 190 aF. The authors outline the fabrication procedures, discuss operational properties, and give sample handling considerations. These devices exhibit a highly nonlinear I-V characteristic which is modulated by the gate voltage, as expected for the Coulomb blockage. In the superconducting state, the superconducting gap in the quasiparticle density of states leads to transistor action above 1.3 K, a temperature easily reached with pumped liquid /sup 4/He refrigeration. The authors also discuss the observation of an intermittent intrinsic switching noise in the offset charge of the central island.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:3 ,  Issue: 1 )