By Topic

Magnetic susceptibility imaging for nondestructive evaluation (using SQUID magnetometer)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wikswo, J.P., Jr. ; Dept. of Phys. & Astron., Vanderbilt Univ., Nashville, TN, USA ; Ma, Y.P. ; Sepulveda, N.G. ; Tan, S.
more authors

High-resolution superconducting magnetometers such as MicroSQUID (superconducting quantum interference device) have been shown to be effective for nondestructive evaluation. MicroSQUID can also be used with a room-temperature magnet to image the magnetic susceptibility of materials. A diamagnetic or paramagnetic sample is scanned in the applied field, and the local perturbations are measured. For thin samples, such as plates, sheets, or thin sections of rock, the data are deconvolved to generate two-dimensional susceptibility images. Three-dimensional structures can be imaged with magnetic susceptibility tomography: deconvolution of a large data set obtained by applying the field and scanning in multiple orientations. Extremely small surface defects on nonmagnetic or weakly magnetic samples are imaged by decorating the sample with paramagnetic microspheres prior to scanning. Magnetic susceptibility imaging demonstrates the feasibility of SQUID nondestructive evaluation on materials that could previously be examined only with X-rays or ultrasound.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:3 ,  Issue: 1 )