By Topic

A modular 31-channel SQUID system for biomagnetic measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dossel, O. ; Philips GmbH Forschungslaboratorien, Forschungsabteilung Tech. Syst., Hamburg, Germany ; David, B. ; Fuchs, M. ; Kruger, J.
more authors

A modular multichannel superconducting quantum interference device (SQUID) system, in which every channel can be optimized or replaced individually, was further improved. The number of channels was increased to 31. The noise level is better than 10 fT/ square root Hz. A novel way of RF shielding using conductive paint avoids degradation of the SQUID characteristics due to RF interference without introducing significant extra noise, so that the system works without any Faraday cage. A simplified way of coupling the modulation and feedback signal directly to the SQUID was developed and tested successfully. The SQUID module with superconducting connections to the gradiometer and its superconducting shield was miniaturized to an outer diameter of 5 mm, so that it can be placed near the gradiometer without introducing significant unbalance. Tests have demonstrated that the accuracy of the system with respect to the localization of a single current dipole is better than 2 mm.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:3 ,  Issue: 1 )