By Topic

Performance analysis of an all-digital BPSK direct-sequence spread-spectrum IF receiver architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung, B.-Y. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Chien, C. ; Samueli, H. ; Jain, R.

A VLSI architecture for an all-digital binary phase shift keying (BPSK) direct-sequence (DS) spread spectrum (SS) intermediate frequency (IF) receiver is presented, and an in-depth performance analysis is given. The all-digital architecture incorporates a Costas loop for carrier recovery and a delay-locked loop for clock recovery. For the pseudorandom noise (PN) acquisition block, a robust energy detection scheme is proposed to reduce false PN locks over a broad range of signal-to-noise ratios. The proposed architecture is intended for use in the 902-928 MHz unlicensed spread spectrum radio band. A 100 kbs information rate and a 12.7 Mchips/second PN code rate are assumed. The IF center frequency is 12.7 MHz and the IF sampling rate is 50.8 Msamples/second, which is the Nyquist rate for the 25.4 MHz bandwidth signal. Finite wordlength effects have been simulated to optimize the architecture, thereby minimizing the chip area, and results of the finite wordlength simulations demonstrate that the chip architecture achieves a bit error rate performance within 1 dB of theory in an additive white Gaussian noise channel

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:11 ,  Issue: 7 )