By Topic

The dependence of indoor radio channel multipath characteristics of transmit/receiver ranges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bultitude, R.J.C. ; Commun. Res. Centre, Ottawa, Ont., Canada ; Melancon, P. ; Zaghloul, H. ; Morrison, G.
more authors

The authors report experimental and modeling studies that investigate the dependence of indoor radio channel multipath characteristics on a transmit/receive range. Specifically, a simple model for estimation of the complex baseband equivalent impulse response for indoor channels is explained. Using this model, the relationship between RMS delay spread and range on static indoor channels is estimated. Results show that this relationship is nonmonotonic and has a maximum at a range that depends on the building dimensions and the electrical properties of reflecting surfaces. The model is used in infinite, as well as finite, resolution modes to supplement the measurements of impulse response characteristics in different buildings using a limited resolution channel sounder. Experimental and modeling results are combined to derive conclusions that confirm the anticipated nonmonotonic relationship exists in empty buildings. Measurement results demonstrate that furniture has the effect of destroying this relationship, making RMS delay spread almost independent of range

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:11 ,  Issue: 7 )