By Topic

Compiler optimizations for distributed-memory programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gupta, R. ; Dept. of Comput. Sci., Pittsburgh Univ., PA, USA

The single-program multiple-data (SPMD) mode of execution is an effective approach for exploiting parallelism in programs written using the shared-memory programming model on distributed memory machines. However, during SPMD execution one must consider dependencies due to the transfer of data among the processors. Such dependencies can be avoided by reordering the communication operations (sends and receives). However, no formal framework has been developed to explicitly recognize the represent such dependencies. The author identifies two types of dependencies, namely communication dependencies and scheduling dependencies, and proposes to represent these dependencies explicitly in the program dependency graph. Next, he presents program transformations that use this dependency information in transforming the program and increasing the degree of parallelism exploited. Finally, the author presents program transformations that reduce communication related run-time overhead

Published in:

Scalable High Performance Computing Conference, 1992. SHPCC-92, Proceedings.

Date of Conference:

26-29 Apr 1992