By Topic

On the influence of programming models on shared memory computer performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ngo, T.A. ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; Snyder, L.

Experiments are presented indicating that on shared-memory machines, programs written in the nonshared-memory programming model generally offer better performance, in addition to being more portable and scalable. The authors study the LU decomposition problem and a molecular dynamics simulation on three shared-memory machines with widely differing architectures, and analyze the results from three perspectives: performance, speedup, and scaling

Published in:

Scalable High Performance Computing Conference, 1992. SHPCC-92, Proceedings.

Date of Conference:

26-29 Apr 1992