By Topic

Identification of variegated coloring in skin tumors: neural network vs. rule-based induction methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The use of neural networks for automatic identification of variegated coloring, which is believed to be one of the most predictive features for malignant melanoma, is described. The Nestor development system (NDS) was chosen for neural network implementation. At the heart of NDS is a three-layer neural network called a restricted Coulomb energy (RCE) network. The learning scheme and the database for detection of variegated coloring are discussed. Results are reported.<>

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:12 ,  Issue: 3 )