By Topic

Hot-spot traffic relief in cellular systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. -S. P. Yum ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; W. -S. Wong

By analyzing mathematical models, it is shown that combining channel borrowing with a coordinated sectoring or overlying scheme provides effective ways to handle hot-spots in the system. Blocking probabilities with these arrangements are derived, and the dynamic sharing with bias (DSB) rule is suggested for increasing the trunking efficiency. A simple handoff model is formulated and analyzed for comparing the probabilities of additional handoffs due to sectoring and overlaying of cells. With the nominal allocation of 60 channels per cell and a donor cell having a load of 30 Erlangs, numerical results show that at a blocking requirement of 1%, the traffic load in the hot-spot cell can be increased from 47 to 63 Erlangs with the use of the channel borrowing with the cell sectoring scheme: while with the use of the DSB rule, the load can be increased further to 71 Erlangs. A slightly higher load can be carried in the hot-spot cell with the use of cell overlaying arrangement

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:11 ,  Issue: 6 )