By Topic

Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. -S. Pan ; Michigan Univ., Ann Arbor, MI, USA ; A. E. Yagle ; N. H. Clinthorne ; W. L. Rogers

The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within ∈ in the generalized Landweber iteration, this component will still stay within ∈ during subsequent iterations with a different shaping matrix, as long as this shaping matrix satisfies the convergence criterion for the component. Two different shaping matrices are used: the first recovers low-frequency image components; and the second may be used either to accelerate the reconstruction of high-frequency image components, or to attenuate these components to filter the image. The variable shaping matrix gives results similar to truncated inverse filtering, but requires much less computation and memory, since it does not rely on the singular value decomposition

Published in:

IEEE Transactions on Medical Imaging  (Volume:12 ,  Issue: 2 )