By Topic

Figure-ground discrimination: a combinatorial optimization approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herault, L. ; LETI, Grenoble, France ; Horaud, R.

The figure-ground discrimination problem is considered from a combinatorial optimization perspective. A mathematical model encoding the figure-ground discrimination problem that makes explicit a definition of shape based on cocircularity, smoothness, proximity, and contrast is presented. This model consists of building a cost function on the basis of image element interactions. This cost function fits the constraints of an interacting spin system that, in turn, is a well suited physical model that solves hard combinatorial optimization problems. Two combinatorial optimization methods for solving the figure-ground problem, namely mean field annealing, which combines mean field approximation theory and annealing, and microcanonical annealing, are discussed. Mean field annealing may be viewed as a deterministic approximation of stochastic methods such as simulated annealing. The theoretical bases of these methods are described, and the computational models are derived. The efficiencies of mean field annealing, simulated annealing, and microcanonical annealing algorithms are compared. Within the framework of such a comparison, the figure-ground problem may be viewed as a benchmark

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 9 )