By Topic

Optimal motion and structure estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weng, Juyang ; Beckman Inst., Illinois Univ., Urbana, IL, USA ; Ahuja, N. ; Huang, T.S.

The causes of existing linear algorithms exhibiting various high sensitivities to noise are analyzed. It is shown that even a small pixel-level perturbation may override the epipolar information that is essential for the linear algorithms to distinguish different motions. This analysis indicates the need for optimal estimation in the presence of noise. Methods are introduced for optimal motion and structure estimation under two situations of noise distribution: known and unknown. Computationally, the optimal estimation amounts to minimizing a nonlinear function. For the correct convergence of this nonlinear minimization, a two-step approach is used. The first step is using a linear algorithm to give a preliminary estimate for the parameters. The second step is minimizing the optimal objective function starting from that preliminary estimate as an initial guess. A remarkable accuracy improvement has been achieved by this two-step approach over using the linear algorithm alone

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 9 )