By Topic

Comparing images using the Hausdorff distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. P. Huttenlocher ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA ; G. A. Klanderman ; W. J. Rucklidge

The Hausdorff distance measures the extent to which each point of a model set lies near some point of an image set and vice versa. Thus, this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. Efficient algorithms for computing the Hausdorff distance between all possible relative positions of a binary image and a model are presented. The focus is primarily on the case in which the model is only allowed to translate with respect to the image. The techniques are extended to rigid motion. The Hausdorff distance computation differs from many other shape comparison methods in that no correspondence between the model and the image is derived. The method is quite tolerant of small position errors such as those that occur with edge detectors and other feature extraction methods. It is shown that the method extends naturally to the problem of comparing a portion of a model against an image

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 9 )